编辑 | 谢治贤
出品 | 于见(ID:mpyujian)
作为一种底层生产力工具,人工智能正在向各个行业、方向商用化,甚至掀起了新一轮的技术革命浪潮。
在产品具体表现上,伴随着智能音箱、智能驾驶、无人机等人工智能的落地,AI无形中改变了各行各业的生态,加快了企业的数字化进程,同时也改变了产业链结构,极大地提高了信息利用率。
但这一切的发展都离不开数据和算法的支持。数据作为人工智能的三大要素之一,已经成为人工智能产业的重要支撑者。如何构建以数据为中心的服务和壁垒已成为人工智能企业面临的问题。
云聚数据作为专门从事人工智能数据采集和标注的服务公司,前不久通过了中国人工智能学会(CAAI)遴选成为学会会员单位。但在得到学会会员名额地位后,云聚数据也面临着数据采集定制化困难、精密度低,质量改进缓慢等难点,这也折射出当前人工智能数据服务的诸多痛点。
科技颠覆加速,探索过程艰辛
作为人工智能数据服务品牌,云聚数据能够为智能驾驶、智能家居、智能安防、智能城市、智能金融等领域提供定制的数据采集和标注服务,支持文本、语音、图像、视频等各类数据的处理。截至目前,云聚数据已在华东、华北、华南等地建立了数据交付中心和数据采集基地,并成功为数百家企业提供了人工智能数据服务。
从大背景下来看,市场上对基础数据服务有三种不同的需求。一是研发需求,指前期采用标准数据集产品培训,中后期采用专业数据定制服务;二是培训需求,一般打磨算法的准确性和纵深程度,是市场的主要需求。一般面向定制化服务,这对数据的准确性要求很高;第三是落地业务需求,这一般面向更成熟的核心场景,对服务感知有更高的要求。
在云聚数据看来,人工智能最终是为了商用,为了被使用,所以对人工智能的数据质量要求会越来越高、越来越准确,在场景中会出现更多的定制数据需求,除了提高数据安全性和隐私保护外,要保证数据的唯一性、场景性,才能真正帮助企业建立数据核心屏障。
由于云测量的企业服务基因,云聚数据结合项目管理流程能力,也保证了数据的准确性和机密性。但在某种程度上来说,云聚数据还需提供更准确、更有价值的数据,只有重头探索“人工智能数据服务”,不在过去的成就里故步自封,才能推动人工智能的进一步落地,帮助人工智能企业获取更多高质量的特定场景数据,构建自己的核心数据屏障。
文章TAG:百度 腾讯 安卓