AI全面发展必然要解决“个性化”与“规模化”的矛盾问题。

王海峰提到的深度学习的通用性特点,以及深度学习框架及平台的发展,正在推动人工智能标准化、自动化和模块化,进入工业大生产阶段,就是在针对这个问题。其解决方式本质是通过深度学习框架,让AI在“深层”也实现“框架能力”的通用性(对应地,AI已经在“表层”实现“应用能力”的通用性),如此,专属领域的AI应用也可以被“批量生产”。

由此,也不难理解PaddlePaddle同时在峰会上发布的中文名字“飞桨”——AI发展到了这个阶段,深度学习已经急速划动AI潮流、帮助AI跃迁进入“工业大生产”时代。

这里通过百度PaddlePaddle平台案例来理解。

在林业管理中,红脂大小蠹是非常严重的害虫灾害,过去,林业管理系统需要通过人力监测来预报和治理虫情,现在,北京林业大学在百度PaddlePaddle支撑下研发的智能虫情监测系统,30分钟可完成原本研究院一周的观察工作量,大大提升了灾害防治的效率;

此外,百度曾基于PaddlePaddle深度学习能力完成了一个“AI控烟”监测项目,数万张吸烟动作图片进行了43次深度学习模型训练,能够以较高的准确率完成吸烟人群的识别。

这些案例与人脸识别不同,都具备极强的“个案”色彩,其需求是独特而少有的,传统AI平台在应用层并不能提供对应的解决方案,开发者必须借助深度学习平台自主开发、训练和部署应用。

反过来,这些“个案”的生产实际上建立在框架能力的通用性基础之上,图像识别的深度学习还能以同样的姿势生产出更多有关“识别”的个性化AI应用。

如果类比人类历史上的工业发展变革,深度学习框架实际上也提供了“标准化、自动化、模块化”的生产平台,只不过生产的东西变成了“AI应用”。

抢占智能时代的“操作系统”,百度PaddlePaddle竖起中国深度学旗帜

按王海峰的观点,深度学习框架下接芯片、大型计算机系统,上承各种业务模型、行业应用,是“智能时代的操作系统”。

这也可以理解为,AI深度学习之战,就是抢占智能时代“操作系统”的战争,而“操作系统”的价值不言而喻,这也给了“技术派”百度更充分的底气。

至少在现阶段,凭借深度学习领域的三个“唯一”,百度PaddlePaddle已树立中国深度学习的一面旗帜,打造了一套运行良好的“操作系统”。

1、唯一具备深度学习所需的前置技术积淀

解决问题(AI应用),与教一个人如何“解决问题”(深度学习自构建AI应用)有着维度上的不同。

 2/4   首页 上一页 1 2 3 4 下一页 尾页

文章TAG:系统  操作  操作系统  智能  
下一篇