声音鉴黄师饱受摧残,AI声音鉴黄师为何没帮上忙?

声音鉴黄师饱受摧残,AI声音鉴黄师为何没帮上忙?

声音鉴黄师饱受摧残,AI声音鉴黄师为何没帮上忙?

当然这也还算好的,无非就是缩写。除了缩写,还有一些只能强记的词语。比如养火(互发消息三天出现小火花,互发消息超过三十天出现大火花,养火就是经常联系的意思),欧洲(想要什么就得到什么的人)……

估计研究人员在录入数据时就阵亡了,毕竟这玩意看上去也不算有章可循。值得注意的是,当人们在说话的时候,如果省略一两个字不说,懂得的人自然也懂,但机器不一定能识别人们甚至为了混淆视听,会多语夹杂,这就给机器识别增添了难度。

这种输入标准的不统一,是导致语音识别错误率高的首要原因。我们常用的鼠标和键盘虽然看似简单,但它具备统一的输入标准和精准的视觉反馈这两点,而这正是语音识别技术不具备的,也是困扰现阶段AI鉴黄的一大挑战。

毫不意外,现阶段的声音鉴黄师依然是以人为主。早在互联网发展早期,黄色内容主要是图片和文字,靠人工就可以净化网络环境的目的,但是随着互联网带来的数据爆炸,人工已经远远不能胜任。

虽然声音鉴黄以人为本,但这并不意味着AI鉴黄师没有价值。它能在特定的场景实现鉴定也无疑算是一种进步,而现阶段它所呈现的问题,也无疑是技术发展过程中难以避免的阵痛。

全球经济学家和咨询公司的主流研究课题,总少不了人工智能会引发的失业规模,但是中国的互联网已经跑出了一条独特的路线,因此针对中国的研究少之又少。声音鉴黄师作为互联网发展过程中的独特产物,显然会存在相当长一段时间,而现行的人工智能鉴黄也多为辅助人。

一句正确但无用的话是,可以想见未来AI鉴黄会占据主流,但这个未来应该以哪个时间节点为基准,谁也无法预料。

智能相对论(微信id:aixdlun):深挖人工智能这口井,评出咸淡,讲出黑白,道出vb深浅。重点关注领域:AI+医疗、机器人、智能驾驶、AI+硬件、物联网、AI+金融、AI+安全、AR/VR、开发者以及背后的芯片、算法、人机交互等。


文章TAG:人工智能  意识  社交  
下一篇