无人驾驶的落地,是一场AI与人的博弈

“人类创造技术的节奏正在加速,技术的力量也正以指数级的速度在增长。指数级的增长是具有迷惑性的,它始于极微小的增长,随后又以不可思议的速度爆炸式地增长——如果一个人没有仔细留意它的发展趋势,这种增长将是完全出乎意料的。”

被誉为《Inc.》杂志称为“托马斯爱迪生的法定继承人”的雷库兹韦尔(Ray Kurzweil)在《奇点临近》一书中这样写道。这位拥有13项荣誉博士头衔的世界领先的发明家,为人们描绘了未来人工智能社会图景。

雷库兹韦尔认为,由于摩尔定律的存在,技术会呈指数级增长,而人类社会也将在2045年到达人工智能的奇点,其次,基于生物形态的人类实质上只不过是一套高度复杂神经网络下的一个算法系统,未来必将被更高级的算法系统替代。

“盲目的乐观可能是最致命的大规模杀伤性武器。”皮埃罗•斯加鲁菲认为:“人工智能并不是一个新概念,它起源于1956年或更久之前,只不过,过去由于计算机处理系统还不够强大,人工智能并没有得到长足快速的发展。”

从现实中人工智能的应用的程度来看,目前AI无人驾驶领域的进展似乎也印证了皮埃罗•斯加鲁菲的观点。回顾人类历史重大变革节点不难发现,无论是蒸汽机的改良还是内燃机的发明,出行领域一直都是先进技术应用的最前沿。

追本溯源,近年来无人驾驶技术的爆发的技术基础也源自于2006由Hinton在深度学习领域的革命性成果,由此基于神经网络的深度学习算法得以在计算机视觉、语音识别、以及计算机行为决策方面深度应用,从而构成了无人驾驶软体层面的技术基础,而在实现无人驾驶的工程应用上,已经不存在较大的技术障碍,因而,无人驾驶的天花板依旧在于基于深度学习的AI技术的局限性。

而另一方面,基于AI技术的L4级别的自动驾驶已经开始进入商业化阶段。目前,google Waymo、特斯拉AutoPilot、百度Apollo以及通用Cruise均已实现L4级别的自动驾驶。

无人驾驶的阿喀琉斯之踵

2016年的美国,一辆自动行驶中的特斯拉Models撞上了一辆白色拖挂货车,致使驾驶员死亡,这是第一例无人驾驶车祸致死的案例。

事后,有专业人士据车祸地点的环境分析后指出,在强光直射下,依赖摄像头的图像识别系统失效,未能及时检测出前方正在穿过道路行驶的白色货车,同时由于毫米波雷达位置较低,而一般的毫米波雷达垂直视角在5以内,导致当Tesla靠近拖挂卡车侧面时,雷达波束从下侧穿过了卡车,导致漏检,从而致使事故发生。车祸发生后,特斯拉改进了无人驾驶系统,并修改了官网关于AutoPilot的释义。

 1/3   上一页 1 2 3 下一页 尾页

文章TAG:博弈  落地  风险  
下一篇