文 | 漠兮
来源 | 智能相对论(aixdlun)
如今人工智能大行其道,各行各业都想贴上AI的标签,在线教育也是,各大公司都在凹出不同造型来和人工智能挂上钩,以抢占市场先机,赢得口碑与利润。然而,理想很丰满,现实很骨感。作为人工智能+的应用行业,尽管人工智能在在线少儿英语培训领域已经被应用在个性化教学、智能师生匹配、情绪识别、智能互动课堂、智能语音识别等,但智能相对论(微信id:aixdlun)仍然想提醒,这需要教育公司拥有强大的技术及研发实力的保障,然而这种实力并不是一蹴而就的,超高的门槛限制了教育公司引入人工智能的计划。
先天不足——英语培训相关大数据难获取
人工智能必须的养料——海量的、有效的数据难获取。教育公司得有足够的数据支撑人工智能深度学习的需要,包括英语知识大数据、语音数据、视频数据、学生行为数据等。数据采集后,通过清洗得到有效数据,然后根据教育公司学习系统要求,人工为图片、视频和语音内容打标签、做标记。标注好的数据才可以用来训练人工智能算法模型,然后应用到图像识别、语音识别、动作识别等不同的模块。数据越准确、数量越多,算法模型的效果就越好,产品的体验也会更近一步。
数据的规模和采集能力决定了人工智能在英语在线培训行业的发展速度。而在英语在线培训这个细分领域,21世纪出才开始出现,2010年以后才逐渐成熟,不过短短几年,且受限企业数据源相关设备影响,以及企业本身的对这类数据的关注度及科学技术的发展预见有限,原始数据积累本就不足,加之精细度不足,大规模的样本数据较难获取,更别谈数据的有效性和其标注的质量。
差强人意——用于评估学生英语水平的数据分类不合理
数据的分类与关联,关乎系统最终实现的效果。目前在线教育公司的分类,无论是个性化学习还是智能语音测评,都在粗分类的基础上实现的。如有教育公司采用CCSS教材(Common Core State Standards 简称CCSS,又叫美国共同核心州立教育标准,是由美国教育部以及哈佛、哥伦比亚大学等名校提出的,按照美国大学招生要求制定的教学大纲),它涵盖12年义务教育所有的学科内容,所以当使用人工智能技术评估学生的英语水平时,其分类也只是按各年级水平粗分为12类,且不说用语评估的题目是否精确,仅以此作为学生的实际水平去给其制定学习路径,未免有悖于千人千面的“个性化学习”的初衷。
文章TAG: