其二,抢单模式除了自营物流团队以及合作的第三方物流团队之外,还有很大一部分是采用的众包模式配送方式,众包配送人员在配送的专业性以及服务质量上必然难以得到充分保证。

其三,众包物流配送在保证配送食品的安全性方面,也会存在一定的不足。食品安全并不一定发生在餐饮商家中,物流人员对于食品安全也会有一定的影响。对于外卖O2O来说,一旦平台出现了食品安全问题,对于平台会有着致命的威胁。但是众包物流的配送模式,对于配送人员却无法做到百分百的把控,也就难以做到绝对的食品安全。

相比抢单模式而言,派单模式则需要更高的技术要求,百度外卖的派单是基于云端派单,而这种高技术也更容易形成高竞争壁垒。

首先,派单模式是建立在大数据分析和人工智能的基础之上,能够根据外卖订单量、路线规划、配送人员位置等多个方面的因素进行权衡,然后派选快递配送员,这样就保证了接单的配送效率。

其次,派单模式采用的是专职配送人员+派单模式。相比众包的抢单模式而言,一方面保证了外卖配送的专业性和服务水平,同时对于外卖食品安全问题也是更好地监管。

要实现更智能精准的派单,对于物流技术的要求非常之高,这个是目前大多数平台都难以做到的,百度外卖也正是凭借着领先的物流技术从而建立了自己的高竞争壁垒。

二、人工智能,能够实现更智能化的配送

眼瞅着百度外卖在配送环节逐渐确立优势,美团外卖也开始转变,也开始做专职骑士,由抢单转到派单。对于美团外卖来说,比较难的是调度系统很难做到精准,这对于大数据的挖掘能力要求非常高。拿百度外卖来说,他们拥有1700万POI数据,每天定位250亿次,骑士动态变化很重要,定位信息稍微不精准就会出现问题。

而百度外卖智能物流系统4.0之所以能够实现智能化的配送,其中最主要的一个原因就在于他们具备对大数据深度挖掘的能力。拿百度外卖在北京国贸的外卖配送来说,通过以招商局大厦为中心,在每天中午的繁忙时段,百度外卖都会接到从写字楼大厦的各个角落发出的上万份订单。

百度外卖则把每份订单当成是一份数据,通过网线传送到百度云,形成一个百度的外卖数据中心。在这里,通过智能机器人代替人工,可以同时考量多个变量。百度的人工智能正是从无数次的送餐中深度学习,汇集成大数据,最终实现了98.78%的准时率和32分钟的平均时长。

此外,不同外卖平台的运算能力差异也是很大,骑士在路上骑行的时间还比较容易预估,比如取餐0.5公里,送餐1.5公里。但是餐厅出餐时间如何计算?这个时候大数据的用武之地就凸显出来了,通过借助大数据,百度外卖已经可以做到7分钟内的精确度,前后相差范围在3.5分钟内。比如通过大数据预算该餐厅的出餐时间是10分钟,配送骑士就会10分钟后准时去接单。

 2/3   首页 上一页 1 2 3 下一页 尾页

文章TAG:未来  行业  O2O  
下一篇