互金风控进化史:人工、实地到智能大数据走过哪些曲折?

互金风控进化史:人工、实地到智能大数据走过哪些曲折?

互金风控进化史:人工、实地到智能大数据走过哪些曲折?

根据她的说法,人工智能应用在金融领域有三个阶段。第一个阶段是机器学习(ML)阶段,即互联网金融为代表的金融机构全面渗透到所有模型建设中;第二个阶段是自然语言处理(NLP)阶段,即国内大量互联网贷款和征信公司都在大量使用自然语言处理技术;第三个阶段是知识图谱(KG)阶段,即大量使用知识图谱进行反欺诈分析。“火眼”风控系统恰恰覆盖了这三个阶段的所有应用,也是目前比较完善的风控系统。

机器学习(ML)阶段解决的核心问题在于,让风控模型自动学习、自动匹配各项数据,在模型内发现异常,揪出信用黑户。尤其是机器学习算法能够根据数百万消费者案例,如:资产、履约、身份、偏好、社会关系及借贷情况等进行开发和训练,利用算法评估预测用户是否会违约、是否会按时归还贷款等。

自然语言处理(NLP)阶段解决的问题则是可以在个人及企业主页、社交媒体中发现蕴含着与违约风险深度关联的深层含义,通过复杂的词向量模型将文本转化为计算机能够识别和计算的词向量表征,并基于深度学习技术对其进行特征提取,最终运用成熟的分类器网络将文本数据与违约风险实现高度的风险挂钩,而通过传统方式很难充分挖掘其风险价值。

知识图谱反欺诈(KG)分析恰恰是最重要的一个环节,因为知识图谱反欺诈需要把所有技术融合在一起,构建图谱,从中发现欺诈行为。这也是很多互联网金融公司目前在主攻的方向。

因为在过去,反欺诈人员需要根据借款人提供的信息,查找多方面资料,进行不同属性的比对,从而发现不良征信人。这种工作复杂而枯燥,为了识别团伙欺诈,往往需要收集、整理、分析各种维度的数据,工作量更是成倍增加。而知识图谱反欺诈能够把把每个客户的信息、以及网络上公开的信息织成一张巨大的关系网,并通过可视化的图形将这种关系展示出来。结合反欺诈部门的经验,找存在欺诈的客户。

写在最后:

虽然如今大部分平台都在采用“大数据技术”来做风控,但审核结果严重趋同,现状不容乐观。真正大数据风控技术需要多云数据源(平台积累、征信机构、同业共享)来支持风控审核模型决策,这恰恰是中国互联网金融企业最需要发展的方向,也是必然需要走过的曲折道路。

作者:深几度


文章TAG:数据  大数据  智能  
下一篇